http://betterexplained.com/articles/an-intuitive-guide-to-exponential-functions-e/
e = 2.71828
Example Time!
Examples make everything more fun. A quick note: We’re so used to formulas like 2^x and regular, compound interest that it’s easy to get confused (myself included). Read more about simple, compound and continuous growth.
These examples focus on smooth, continuous growth, not the “jumpy” growth that happens at yearly intervals. There are ways to convert between them, but we’ll save that for another article.
Example 1: Growing crystals
Suppose I have 300kg of magic crystals. They’re magic because they grow throughout the day: I watch a single crystal, and in the course of 24 hours it creates its own weight in crystals. (Those baby crystals start growing immediately as well, but I can’t track that). How much will I have after 10 days?
Well, since the crystals start growing immediately, we want continuous growth. Our rate is 100% every 24 hours, so after 10 days we get: 300 * e^(1 * 10) = 6.6 million kg of our magic gem.
Example 2: Maximum interest rates
Suppose I have $120 in a count with 5% interest. My bank is generous and gives me the maximum possible compounding. How much will I have after 10 years?
Our rate is 5%, and we’re lucky enough to compound continuously. After 10 years, we get $120 * e^(.05 * 10) = $197.85. Of course, most banks aren’t nice enough to give you the best possible rate. The difference between your actual return and the continuous one is how much they don’t like you.
Example 3: Radioactive decay
I have 10kg of a radioactive material, which appears to continuously decay at a rate of 100% per year. How much will I have after 3 years?
Zip? Zero? Nothing? Think again.
Decaying continuously at 100% per year is the trajectory we start off with. Yes, we do begin with 10kg and expect to “lost it all” by the end of the year, since we’re decaying at 10 kg/year.
We go a few months and get to 5kg. Half a year left? Nope! Now we’re losing at a rate of 5kg/year, so we have another full year from this moment!
We wait a few more months, and get to 2kg. And of course, now we’re decaying at a rate of 2kg/year, so we have a full year (from this moment). We get 1 kg, have a full year, get to .5 kg, have a full year — see the pattern?
As time goes on, we lose material, but our rate of decay slows down. This constantly changing growth is the essence of continuous growth & decay.
After 3 years, we’ll have 10 * e^(-1 * 3) = .498 kg. We use a negative exponent for decay — we want a fraction (1/ert) vs a growth multiplier (e(rt)). [Decay is commonly given in terms of “half life”, or non-continuous growth. We’ll talk about converting these rates in a future article.]
More Examples
If you want fancier examples, try the Black-Scholes option formula (notice e used for exponential decay in value) or radioactive decay. The goal is to see e^rt in a formula and understand why it’s there: it’s modeling a type of growth or decay.
And now you know why it’s “e”, and not pi or some other number: e raised to “r*t” gives you the growth impact of rate r and time t.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment